The Davies-Murphy Power Attack

Sébastien Kunz-Jacques Frédéric Muller Frédéric Valette DCSSI Crypto Lab

Introduction

- Two approaches for attacking crypto devices
 - "traditional" cryptanalysis
 - Side Channel Attacks (SCA)
- SCA often use techniques from traditional cryptanalysis
- Popular methods (SPA, DPA, CA, ...) have limitations

Results in this paper

- A new SCA based on Davies-Murphy Attack against DES
- More flexible and powerful than previously known attacks
 - Apply to inner rounds
 - Avoid DPA countermeasures

Side Channel Attacks

- Fundamental hypothesis : side channel leak secret information
- Power Attacks : power consumption W is correlated with manipulated data D

$$W = \lambda D + Noise$$

 Other techniques : Fault Injection, Timing, Electromagnetic Radiations, ...

Usual Approach

Power Attacks apply if we can predict :
D depending on plaintext and few key bits
→ Differential Power Attack (DPA)

 A function of D₁,...,D_t depending on plaintext and few key bits

→ Higher-Order DPA (HO-DPA)

The case of DES

Basic DPA

Predict X with

- plaintext
- guess on 6 key bits ($K_{1...6}$)

Applies to round 1 or 16

Limitations

- Countermeasures :
 - Protection of the first/last rounds
 - Masking
 - Duplication
- Practical Problems to detect the correct key
 - "Ghost peaks"
 - Hardware Implementation / Parallelism

Motivations of this paper

Find a better attack

- Target any inner round of DES
- Avoid popular countermeasures (masking)
- Techniques from "traditional" cryptanalysis may be a good starting point
 - They demonstrate real weaknesses of the designs
 - Often useful in Side Channel Attacks

Davies-Murphy Attack

Davies-Murphy Attack

- Observation by Davies and Murphy about pairs of adjacent S-boxes
- Distribution of $(X_1, X_2) \in \{0, 1\}^8$ is not uniform
- Two distributions \mathcal{D}_1 and \mathcal{D}_2 are possible depending on 1 key bit k

y2 y1	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
00	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
01	5	5	4	3	4	4	з	4	3	4	6	4	4	5	3	3	3	з	4	5	4	4	5	4	5	4	2	4	4	3	5	5
02	2	2	4	6	4	4	6	4	6	4	0	4	4	2	6	6	6	6	4	2	4	4	2	4	2	4	8	4	4	6	2	2
03	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
04	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
05	3	3	4	5	4	4	5	4	5	4	2	4	4	3	5	5	5	5	4	3	4	4	3	4	3	4	6	4	4	5	3	3
06	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
07	5	5	4	3	4	4	3	4	3	4	6	4	4	5	3	3	3	3	4	5	4	4	5	4	5	4	2	4	4	3	5	5
08	5	5	4	3	4	4	3	4	3	4	6	4	4	5	3	3	3	3	4	5	4	4	5	4	5	4	2	4	4	3	5	5
09	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
10	6	6	4	2	4	4	2	4	2	4	8	4	4	6	2	2	2	2	4	6	4	4	6	4	6	4	0	4	4	2	6	6
11	3	3	4	5	4	4	5	4	5	4	2	4	4	3	5	5	5	5	4	3	4	4	3	4	3	4	6	4	4	5	3	3
12	5	5	4	3	4	4	3	4	3	4	6	4	4	5	3	3	3	3	4	5	4	4	5	4	5	4	2	4	4	3	5	5
13	3	3	4	5	4	4	5	4	5	4	2	4	4	3	5	5	5	5	4	3	4	4	3	4	3	4	6	4	4	5	3	3
14	3	3	4	5	4	4	5	4	5	4	2	4	4	3	5	5	5	5	4	3	4	4	3	4	3	4	6	4	4	5	3	3
15	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	Case $k = 0$							Case $k = 1$																								

Table 1. Biased Distributions for S_1 and S_2 (all elements in the table should be divided by 2^{10})

Application to 16 rounds

The distribution of $P_L \oplus C_L$ (or $P_R \oplus C_R$) is the XOR of 8 "biased" distributions

Biham and Biruykov (1994) showed how to mount a key-recovery attack based on this property

Impact for Power Attacks

- For a random (even masked) input of any inner round, the output is not balanced
- This imbalance depends on 1 key bit k
- Hence, the power consumption is different in average when k=0 and k=1
- \blacksquare In theory, analysis of power curves \rightarrow retrieve k

Link with DPA

Power Attacks apply if we can predict :
D depending on plaintext and few key bits
→ Differential Power Attack (DPA)

 Here, we can predict the distribution of intermediate data D from 1 key bit

→ Davies-Murphy Power Attack (DMPA)

Attacks require a consumption model : Linear Model $W = \lambda$ Linear(D) + Noise Hamming Weight Model $W = \lambda$ Hamming(D) + Noise Used Hamming Distance Model in the $W = \lambda$ Hamming(D \oplus R) + Noise

Asiacrypt 2004 – The Davies-Murphy Power Attack

paper

- R is a constant value
- Typically, D is stored in a register that contained R previously
- Consumption depends on how many bits are flipped

Average Hamming Distance

Distributions with R=0

Random Distribution						Case $k = 0$						Case $k = 1$						
h_1 h_2	0	1	2	з	4	h_1 h_2	0	1	2	з	4	h_1 h_2	0	1	2	3	4	
0	4	16	24	16	4	0	4	16	24	16	4	0	4	16	24	16	4	
1	16	64	96	64	16	1	16	64	96	64	16	1	16	64	96	64	16	
2	24	96	144	96	24	2	26	96	144	96	22	2	22	96	144	96	26	
3	16	64	96	64	16	3	14	64	96	64	18	3	18	64	96	64	14	
4	4	16	24	16	4	4	4	16	24	16	4	4	4	16	24	16	4	

Table 2. Distributions of output hamming weight for S_1 and S_2 (all elements in the table should be divided by 2^{10})

Statistical Distance

S-boxes	Statistical Distance $ \mathcal{D}_1 - \mathcal{D}_0 $												
	$\mathrm{constant} = 0$	worst constant	best constant	average value									
(S_1, S_2)	1 54	0	<u>5</u> 32	<u>1.5</u> 32									
(S_2, S_3)	$\left(\begin{array}{c} \frac{3}{32} \end{array}\right)$	<u>3</u> 32	7 32	3.656 32									
(S_3, S_4)	$\frac{1}{128}$	0	9 128	<u>0.473</u> 32									
(S_4, S_5)	$\frac{1}{64}$	0	9 64	0.984 32									
(S_5, S_6)	$\frac{1}{64}$	$\frac{1}{64}$	<u>3</u> 32	<u>1.195</u> 32									
(S_{6}, S_{7})	<u>3</u> 64	$\frac{1}{64}$	9 128	$\frac{1.262}{32}$									
(S_{7}, S_{8})	$\frac{1}{16}$	$\frac{1}{16}$	25 128	<u>3.094</u> 32									
(S_8, S_1)	$\frac{1}{16}$	1128	3 32	0.711 32									

Table 4. Statistical distances with constant R_i 's

Summary

- Power consumption is correlated with hamming distance
- Distribution of hamming distance depends on 1 key bit k
- With an appropriate indicator, determine if k=0 or k=1

- More details in the paper
- Practical problems
 - What indicator to choose ?
 - Parallelism of the architecture ?

Conclusion

- Davies-Murphy Power Attack (DMPA)
 - Predict the distribution of intermediate data
 - Apply to any DES inner round
 - Counter the effect of masking countermeasures
- Extensions and Improvements
 - Find better methods for parallel implementations
 - Extend to other ciphers